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Vortex sub-lattice melting in a two-component superconductor
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We consider the vortex matter in a three-dimensional two-component superconductor with indi-
vidually conserved condensates with different bare phase stiffnesses in a finite magnetic field, such as
the projected superconducting state of liquid metallic hydrogen. The ground state is an Abrikosov
lattice of composite, i.e. co-centered, vortices in both order parameters. We investigate quanti-
tatively two novel phase transitions when temperature is increased at fixed magnetic field. i) A
“vortex sub-lattice melting” phase transition where vortices in the field with lowest phase stiffness
(“light vortices”) loose co-centricity with the vortices with large phase stiffness (“heavy vortices”),
thus entering a liquid state. Remarkably, the structure factor of the light vortex sub-lattice vanishes
continuously. This novel transition, which has no counterpart in one-component superconductors,
is shown to be in the 3Dxy universality class. Across this transition, the lattice of heavy vortices
remains intact. ii) A first order melting transition of the lattice of heavy vortices, with the novel
feature that these are interacting with a background liquid of light vortices. These findings are borne
out in large-scale Monte Carlo simulations.

PACS numbers: 71.10.Hf, 74.10.+v, 74.90.+n,11.15.Ha

Theories with multi-component bosonic scalar matter
fields minimally coupled to a gauge field are of interest
in a variety of condensed matter systems and beyond.
This includes such disparate systems as superconduct-
ing low temperature phases of light atoms1,2,3,4,5,6 un-
der extreme enough pressures to produce liquid metallic
states, easy-plane quantum antiferromagnets7, as well as
other multiple-component superconductors2,3. It also has
applications in particle physics8. The projected liquid
metallic states of hydrogen (LMH)1 may soon be real-
ized in high pressure experiments9,10. Moreover, LMH is
abundant in the interiors of the giant planets Jupiter and
Saturn, where it is the origin of their magnetospheres11.
At low temperatures, compressed liquid hydrogen is par-
ticularly interesting since it features prominent quantum
fluctuations which lead to the possibility of a new state
of matter, a near ground state liquid metal1. Its su-
perconducting counterpart involves Cooper pairs of elec-
trons and protons1, whence symmetry precludes Joseph-
son coupling between different condensate species. Re-
solving what happens to such a system in a magnetic
field is now a matter of some urgency, due to new and
detailed first principles calculations predicting LMH un-
der extreme pressures of order 400GPa10. This is not
far from experimentally achieved pressures of 320GPa9,
where hints of a maximum in the melting temperature
versus pressure are evident. Magnetic-field experiments
may very likely be exclusive probes to provide confirma-
tion of LMH. A first study of the phase diagram of the
projected LMH in magnetic fields has been presented, un-
veiling a phase diagram with rich structure5. This study
raises complex issues of interest also in the broader do-
main of physics concerning the order and universality
classes of possible phase transitions separating phases of
partially broken symmetries in quantum fluids. Here, we
report on a study of this question based on a confluence

of exact topological arguments and large-scale Monte-
Carlo(MC) simulations.

For general number of componentsN (relevant for mix-
tures of light atoms), the Ginzburg-Landau model is de-
fined by the Lagrangian

L =

N
∑

α=1

|DΨ
(α)
0 (r)|2

2M (α)
+ V ({Ψ

(α)
0 (r)}) +

1

2
(∇× A(r))2.(1)

Here, {Ψ
(α)
0 (r) | α = 1 . . .N} are complex scalar fields,

M (α) is the mass of the condensate species α, and
D = ∇ − ieA(r). In LMH each individual condensate

is conserved, consequently V ({Ψ
(α)
0 (r)}) is only a func-

tion of |Ψ
(α)
0 (r)|2. The model is studied in the phase-

only approximation Ψ
(α)
0 (r) = |Ψ

(α)
0 | exp[iθ(α)(r)] where

|Ψ
(α)
0 | = const.
For the discussions in this paper, another form of the

action is useful. Introducing |ψ(α)|2 = |Ψ
(α)
0 |2/M (α) and

Ψ2 ≡
∑N

α=1 |ψ
(α)|2, Eq. (1) may be rewritten6 in terms

of one charged and N − 1 neutral modes

L =
1

2Ψ2

(

N
∑

α=1

|ψ(α)|2∇θ(α) − eΨ2
A

)2

+
1

2
(∇× A)2

+
1

4Ψ2

N
∑

α,β=1

|ψ(α)|2 |ψ(β)|2
(

∇(θ(α) − θ(β))
)2

. (2)

While Eq. (1) is convenient for MC simulations, Eq. (2)
has advantages for analytical considerations, since the
neutral and the charged modes are explicitly identified.
Moreover, Eq. (2) is convenient for identifying various
states of partially broken symmetry, emerging when an
N -component system is subjected to an external mag-
netic field5,6.
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From now on we focus on the case N = 2. In the case
of LMH, Ψ

(1)
0 and Ψ

(2)
0 will denote protonic and elec-

tronic superconducting condensates, respectively, and
hence |ψ(1)|2 ≪ |ψ(2)|2. In zero external magnetic field
this system features a low-temperature phase-transition
in the 3Dxy universality class at Tc1 where superfluidity
is lost, followed at higher temperatures by an inverted
3Dxy transition at Tc2 where superconductivity and the
Higgs mass of A (Meissner effect) is lost4. Here, we will
consider the system in finite magnetic field at tempera-
tures below Tc2

5.

We define a type-α vortex as a topological defect in

Ψ
(α)
0 associated with a non-trivial phase winding ∆θ(α) =

±2π, whereas a composite vortex is a topological defect
where type-1 and type-2 vortices coincide in space. At

) B2 =2
(2)

) B2 =2
(1)(1)

) B2 =2
(2)) B2 =2

(1)

A B

C D

FIG. 1: Panel A: A type-II, N = 2 superconductor at zero
temperature in a magnetic field forms a lattice of composite
Abrikosov vortices, i.e. co-centered type-1 (red) and type-2
(blue) vortices. Panel B: Low-temperature fluctuations in
the composite Abrikosov lattice. Thermal fluctuations gen-
erate closed loops of composite vortices and local splitting of
field-induced composite vortices. This phase features super-
fluidity, as well as longitudinal superconductivity. Panel C:

A liquid of type-1 vortices immersed in a background lattice
of type-2 vortices. There is a temperature region in low mag-
netic field when type-1 vortices form a vortex liquid and the
corresponding vortex loops are proliferated, while type-2 vor-
tices form an Abrikosov lattice. Type-1 and type-2 vortices
carry only a fraction of magnetic flux quantum in this state.
Superfluidity is lost and longitudinal superconductivity is re-
tained. The arrow from panel B to panel C illustrates type-1
loop-proliferation. Panel D: A two-component vortex liquid
of type-1 and type-2 vortices. Superfluidity and longitudi-
nal superconductivity is lost, i.e. this is the normal metallic
phase5. There is no type-2 loop proliferation going from panel
C to panel D, since this is a first-order melting transition of
the type-2 Abrikosov lattice in the background of a liquid of
linetension-less type-1 vortices.

low temperatures the formation of an Abrikosov lattice
of non-composite vortices is forbidden because these vor-
tices have a logarithmically divergent energy, whereas
composite vortices have finite energy3,4. In a type-II 2-

component superconductor, therefore, an Abrikosov lat-
tice of composite type-1 and type-2 vortices is formed,
illustrated in panel A of Fig. 1. At elevated tempera-
tures, the 2-component system in a magnetic field will
exhibit thermal excitations in the form of fractional-flux
vortex loops similar to the case of zero magnetic field
B = ∇ × A = 03,4. Since the field-induced vortices are
logarithmically bound states of constituent (elementary)
vortices, the thermal fluctuations will induce a local split-
ting of composite vortices in the form of two half-loops
connected to a straight line5, as shown in panel B of Fig.
1.

Consider now the processes illustrated in panel B of
Fig. 1 for the case |ψ(1)|2 ≪ |ψ(2)|2, upon increasing
the temperature beyond the low-temperature regime. We
may view this process as a type-1 closed vortex loop su-
perposed on an Abrikosov lattice of (slightly) fluctuat-
ing composite vortices. An important point to notice
is that a type-α vortex does not interact with a com-
posite vortex by means of a neutral mode6. This fol-
lows from a topological argument that two split branches
will feature nontrivial winding in the composite neu-
tral field θ(1) − θ(2), while a composite vortex line does
not. Hence, the splitting transition may be viewed as a
type-1 vortex loop-proliferation in a neutral superfluid.
This is illustrated in Fig. 2. Thus, we may utilize

) B2 =2
(1)

) B2 =2
(1)

) B2 =2
(2)

) B2 =2
(1)(1)

) B2 =2
(2)

) B2 =2
(1)(1)

) B2 =2
(1)(1)

) B2 =2
(2)

=2B
)(= ( -2 2)

(1) (2)
)

FIG. 2: Detailed illustration of the low-temperature ther-
mal fluctuations in an Abrikosov lattice of composite vor-
tices. A local excursion of the vortex component with lowest
bare phase stiffness (type-1 vortex) away from the composite
vortex lattice may be viewed as a type-1 bound vortex loop
superposed on the composite Abrikosov lattice. The compos-
ite vortex line does not interact with a vortex with nontrivial
winding in ∆γ = ∆(θ(1) − θ(2))6. A splitting transiton of the
composite Abrikosov lattice, such as illustrated in going from
panel B to panel C in Fig. 1, may therefore be viewed as a
zero-field vortex-loop proliferation of type-1 vortices, with a
phase transition in the 3Dxy universality class12,13,14.

the well-known results for the critical properties of the
3Dxy model for neutral superfluids described as a vortex-
loop proliferation12,13,14. Therefore, somewhat counter-
intuitively, this “vortex sublattice melting” phase tran-
sition is in the 3Dxy universality class12,13,14, and not a
first order melting transition. The resulting phase is one
where superfluidity is lost and longitudinal superconduc-

tivity is retained in the component Ψ
(2)
0 ,5 illustrated in

panel C of Fig. 1.
Apart from the sub-lattice melting transition, thermal

fluctuations will produce a melting transition of the type-
2 Abrikosov lattice at a higher temperature. It is well
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known that sufficiently strong thermal fluctuations drive
a first-order melting transition of the Abrikosov lattice14

in N = 1 superconductors. Due to the interplay with
the proliferated type-1 vortices, a counterpart to this ef-
fect for the case N = 2 when |ψ(1)|2 6= |ψ(2)|2 is more
complex. The melting temperature TM(B) of the type-2
Abrikosov lattice is suppressed with increasing magnetic
field14. At low enough magnetic fields, upon heating the
system, the 3Dxy type-1 vortex-loop transition at Tc1(B)
will be encountered before the melting transition of type-
2 vortices at TM(B). Above TM(B), longitudinal super-
conductivity is also lost, whence we may infer that the
vortex-liquid mixture of liberated type-1 and type-2 vor-
tices is the normal metallic phase5, depicted in panel D
of Fig. 1.

The above physical picture is borne out in large-scale
MC simulations. We consider the model based on Eq. (1)
for N = 2 on an L×L×L lattice with periodic boundary
conditions for coupling constants |ψ(1)|2 = 0.2, |ψ(2)|2 =
2, and e2 = 1/10. The Metropolis algorithm with lo-
cal updating is used in combination with Ferrenberg-
Swendsen reweighting15. To capture the correct physics,
system sizes as large as L = 96 are used. The external
magnetic field B studied is Bx = By = 0, Bz = 2π/32,
thus there are 32 plaquettes in the (x, y)-plane per flux-
quantum. This is imposed by splitting the gauge field
into a static part A0 and a fluctuating part Afluct. The
former is kept fixed to (Ax

0 , A
y
0(r), A

z
0) = (0, 2πxf, 0)

where f is the magnetic filling fraction, on top of which
the latter field is free to fluctuate. Together with the
periodic boundary conditions on Afluct, the constraint
∮

C(A0 +Afluct)dl = 2πfL2, where C is a contour enclos-
ing the system in the (x,y)-plane, is ensured. Note that it
is imperative to fluctuate A, otherwise type-1 and type-2
vortices do not interact3,4,6. To investigate the critical-
ity of the transition at Tc1 we have performed finite size
scaling (FSS) of the third moment of the action. These
simulations are done by using vortices directly, similar
to the procedure described in Ref. 4, the only difference
being the finite magnetic induction of Bz = 2π/32.

We compute the specific heat and the third moment of
the action S =

∫

drL, defined as M3 = (〈S3〉−〈S〉3)/L3.
The peak to peak value of M3 scales with system size
as L(1+α)/ν and the width between the peaks scales as
L−1/ν16. To probe the structural order of the vortex sys-
tem we compute the planar structure function S(α)(k⊥)
of the local vorticity n

(α)(r) =
(

∇×
[

∇θ(α) − e A
])

/2π,
given by

S(α)(k⊥) =
1

(fL3)2
〈|
∑

r

n(α)
z (r) eik⊥·r⊥ |2〉, (3)

where r runs over dual lattice sites and k⊥ is perpen-
dicular to B. This function will exhibit sharp peaks
for the characteristic Bragg vectors K of the type-α
Abrikosov lattice and will feature a ring-structure in its
corresponding liquid of type-α vortices. The signature
of vortex sub-lattice melting will be a transition from a
six-fold symmetric Bragg-peak structure to a ring struc-

ture in S(1)(K) while the peak structure remains intact
in S(2)(K). Furthermore, we compute the vortex co-
centricity Nco of type-1 and type-2 vortices, defined as
Nco ≡ N+

co −N−
co, where

N±

co ≡

∑

r
|n

(2)
z (r)|δ

n
(1)
z (r),±n

(2)
z (r)

∑

r
|n

(2)
z (r)|

, (4)

where δi,j is the Kronecker-delta. The reason for con-
sidering this subtracted function is that we then elimi-
nate the effect of random overlap of vortices in the high-
temperature phase T > Tc1 due to vortex-loop prolif-
eration, and focus on the compositeness of field-induced
vortices. Note that δ

n
(1)
z (r),±n

(2)
z (r)

= 1 if and only if vor-

tex segments of type-1 and type-2 are locally co-centered
and co-directed (+) and counter-directed (−) on the same
dual lattice site r, otherwise it is zero. Hence, Nco is the
fraction of type-2 vortex segments that are co-centered
with type-1 vortices, providing a measure of the extent
to which vortices of type-1 and type-2 form a composite
vortex system. Hence, it probes the splitting processes
visualized in panel B of Fig. 1 and in Fig. 2. The results
are shown in Fig. 3.

The specific heat has a pronounced peak at Tc1 asso-
ciated with the 3Dxy transition, as well a broader and
less pronounced peak which is the finite field remnant
of the zero-field inverted 3Dxy transition13. Scaling of
M3 at Tc1 shown in the inset c in Fig. 3 yields the crit-
ical exponents α = −0.02 ± 0.06 and ν = 0.67 ± 0.05
in agreement with the 3Dxy universality class. A novel
result, not encountered in one-component superconduc-
tors, is that the structure function S(1)(K) vanishes con-
tinuously as the temperature approaches Tc1 from be-
low, which is precisely the hallmark of the decomposition
transition that separates the two types of vortex states
depicted in panels B and C in Fig. 1. A related in-
triguing feature is the vanishing in the co-centricity Nco

at Tc1 as a function of temperature, which we will dis-
cuss in detail below. The first-order melting transition is
seen to take place at TM, where S(2)(K) is seen to vanish
discontinuously. This is the temperature at which the
translational invariance is restored through melting of
the type-2 Abrikosov vortex lattice. The resulting trans-
lationally invariant high-temperature phase is depicted in
panel D of Fig. 1. In the temperature interval T < Tc1

the system features superconductivity and superfluidity
simultaneously5, since there is long-range order both in
the charged and the neutral vortex modes. In the tem-
perature interval Tc1 < T < TM long-range order in the
neutral mode is destroyed by loop-proliferation of type-1
vortices, hence superfluidity is lost5. However, longitudi-
nal one-component superconductivity is retained, along
the direction of the external magnetic field. For T > TM

superconductivity is also lost, hence this is the normal
metallic state, which is a two-component vortex liquid.

Next we discuss these results in more detail. The most
unusual and surprising feature is the continuous varia-
tion of S(1)(K) with temperature, even at Tc1 where it
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FIG. 3: MC results for N = 2 |ψ(1)|2 = 0.2, |ψ(2)|2 = 2,
and e = 1/

√
10 are presented. Panel a shows specific heat

Cv in black and co-centricity Nco = N+
co − N−

co in green.
Note how the specific heat anomaly at Tc1 = 0.37, associ-
ated with the proliferation of type-1 vortices, matches the
point at which Nco drops to zero, illustrating that type-1 vor-
tices tear themselves off type-2 vortices. The remnant of the
zero-field anomaly in the specific heat can be seen as a hump
at T ∼ 3.6. Panel b shows the structure factors S(1)(K)

in red and S(2)(K) in blue for the particular Bragg vector

K = (π/4,−π/4). We see that S(1)(K) vanishes continuously

at Tc1, while S(2)(K) vanishes discontinuously at TM = 2.34.
Panel c shows the FSS plots of the M3 from which the ex-
ponents α = −0.02 ± 0.06 and ν = 0.67 ± 0.05 is extracted,
showing that the sub-lattice melting is a critical phenomenon
in the 3Dxy universality class. Panels d, e, f, and g are gray
shade plots of the structurefactor S(2)(k⊥) for the temper-
atures Td = 0.35, Te = 0.4, Tf = 1.66, and Tg = 2.85, re-
spectively. At Td and Te on both sides of the specific heat
anomaly, the Abrikosov FLL remains intact. The six fold
Bragg symmetry is intact at Tf , but is lost at TM to give a
ring pattern at Tg, the hallmark of a vortex liquid.

vanishes. The explanation for this is the topological ar-
guments introduced above, involving a vortex-loop pro-
liferation of type-1 vortices (which destroys the neutral
superfluid mode) in the background of a composite vor-
tex lattice, which the type-1 vortices essentially do not
see, cf. Fig. 2. As far as the composite neutral Bose field
θ(1) − θ(2) is concerned, it is precisely as if the compos-
ite vortex lattice were not present at all. Hence, S(1)(K)
vanishes for a completely different reason than S(2)(K),

namely due to critical fluctuations, i.e. vortex-loop pro-
liferation in the condensate component with lowest bare
stiffness. Such a phase transition does not completely
restore broken translational invariance associated with
an Abrikosov vortex lattice, since for the type-2 vortices
quite remarkably, the Abrikosov vortex lattice order sur-
vives the decomposition transition, due to interaction be-
tween heavy vortices mediated by charged modes. The
vanishing of Nco is particularly interesting, and finds a
natural explanation within the framework of the above
discussion. That is, for T ≪ Tc1, we have Nco ≈ 1, so
the vortex system consists practically exclusively of com-
posite vortices. As the temperature increases, thermal
fluctuations induce excursions such as those illustrated
in panel B of Fig. 1 and in Fig. 2, which reduce N±

co

from their low-temperature values, reaching a minimum
at Tc1 and then increase for T > Tc1. For temperatures
above, but close to, Tc1 fluctuations in vortices originat-
ing in ∆θ(2) are still small, so the variations in N±

co reflect
thermal fluctuations in vortices originating in ∆θ(1). The
increase of N±

co means that type-1 vortex loops are ther-
mally generated, and thus tend to randomly overlap more
with the moderately fluctuating type-2 vortices. At their
first order melting transition, type-2 vortices fluctuate
only slightly. Thus, the vanishing of Nco above Tc1 re-
flects the increase in the density of thermally generated
type-1 vortex loops in the background of a slightly fluctu-
ating type-2 Abrikosov vortex lattice, cf. panel C in Fig.
1.

In summary, we have investigated the orders and uni-
versality classes of thermally driven phase transitions in
a two-component vortex system in a magnetic field. We
find two phase transitions for the fields we consider in
this paper (low-field regime). i) A 3Dxy phase-transition
associated with melting of the Abrikosov lattice origi-
nating in the phases with lowest stiffness, which may be
viewed as vortex-loop proliferation taking place in the
background of a composite vortex lattice. The structure
function associated with the type-1 vortices vanishes con-
tinuously at the transition. This phase transition has no
counterpart in a one-component superconductor. ii) A
first-order vortex lattice melting associated with restora-
tion of translational invariance of the type-2 vortex sys-
tem. The corresponding structure function vanishes dis-
continuously at the transition, which however takes place
in the background of a liquid of linetension-less type-1
vortices. This also sets the type-2 Abrikosov lattice melt-
ing apart from the corresponding phenomenon in one-
component superconductors.
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